Trigonometry and Modelling Cheat Sheet

This chapter builds upon
trigonometric functions

Addition Formulae

- $\sin (A+B) \equiv \sin A \cos B+\cos A \sin B \quad$. $\sin (A-B) \equiv \sin A \cos B-\cos A \sin B$
- $\quad \cos (A+B) \equiv \cos A \cos B-\sin A \sin B \quad$ - $\quad \cos (A-B) \equiv \cos A \cos B+\sin A \sin B$
$\tan (A+B) \equiv \frac{\tan A+\tan B}{1-\tan A \tan B}$

$$
\tan (A-B) \equiv \frac{\tan A-\tan B}{1+\tan A \tan B}
$$

You nee
angles.

Example 1: Show, using the formula for $\sin (A+B)$, that $\sin \left(75^{\circ}\right)=\frac{\sqrt{6}+\sqrt{2}}{4}$

We can rewite $\sin \left(77^{\circ}{ }^{\circ}\right.$ as $\sin \left(45^{\circ}+30^{\circ}\right.$. We choose 45 and 30 because we know the
exact values 0 sin $\left(45^{\circ}\right.$, $\cos \left(45^{\circ}\right.$), $\sin \left(30^{\circ}\right)$ and $\cos \left(30^{\circ}\right)$, so when we put them into the exact values of $\sin \left(45^{\circ}\right), \cos \left(44^{\circ}\right), \sin \left(30^{\circ}\right)$ and $\cos \left(33^{\circ}\right)$, ,
addition formul, we will have all terms siven as exact values
$\sin \left(75^{\circ}\right) \equiv \sin (45+30)$
$\sin (45+30) \equiv \sin 45 \cos 30+\cos 45 s i n 30$
$=\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)=\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}$
$=\frac{\sqrt{6}+\sqrt{2}}{4}$

Double-angle formulae

$\sin (2 A) \equiv 2 \operatorname{sinA} \cos A$

You can see that there are three different versions for the cosine double angle formula
familiar with all three as one may be more useful than the others in certain questions.

Simplifying asinx $\pm b \cos x$

2h

Expressions of the boosx

$$
\text { where } a, b, R>0 \text { and } 0<\alpha<\frac{\pi}{2} \text {. }
$$

The procedure for achieving the above simplifications can be broken down into three steps:
[1] Expand the form using the addition formulae, and equate it to asinx $\pm b \cos x$ Compare the coefficients of $\sin x$ and $\cos x$ on both sides of the equation, to get two equations in terms of R and α. [3] Solve these simultaneously to find R and α.

Solving equations

To solve more complicated trigonometric expressions, you will first need to simplify the equation using the formulae and methods we have covered so far. Here is an example showing how we do this in practice

Using exact values for cos $45^{\circ}, \sin 45^{\circ}$	$\sqrt{2} \sin x-2 \sqrt{2} \cos x=0$

Dividing through by cosx and findings the principal
Solution:
Using CAST or
the solutions:
The solution in the
$x=63.4,243.4^{\circ}$

Pure Year 2

Proving identities

 You ned to be able to use everything we have covered so far to prove identities. You must start from one side of the equation and use your knowledge of trigonometric identities to manipulate the expression and achieve what is on the other side. There is no set procedure to follow in your manipulation. Your knowledge of the identities is being tested, so you need tomake sure vou make sure you are very familiar with the
useful preparation tool here is practice.

Example 8: Show that $\cos ^{4} x=\frac{3}{8}+\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x$	
Starting with the LHS:	$L H S=\left(\cos ^{2} x\right)\left(\cos ^{2} x\right)$
Using the double-angle cosine identity to express $\cos ^{2} x$ in terms of $\cos 2 x$:	Since $\cos 2 x=2 \cos ^{2} x-1 \Rightarrow \cos ^{2} x=\left(\frac{\cos 2 x+1}{2}\right)$
Substituting this result back into the LHS:	$\Rightarrow L H S=\left(\frac{\cos 2 x+1}{2}\right)\left(\frac{\cos 2 x+1}{2}\right)$
Expanding:	$=\frac{1}{4}\left(\cos ^{2} 2 x+2 \cos 2 x+1\right)$
Using the double-angle cosine identity again to express $\cos ^{2} 2 x$ in terms of $\cos 4 x$.	Since $\cos 2 x=2 \cos ^{2} x-1 \Rightarrow \cos ^{2} 2 x=\left(\frac{\cos x+1}{2}\right)$
Substituting this result back int the LHS:	$\left.\frac{1}{4} \frac{[\cos 4 x+1}{2}+2 \cos 2 x+1\right]$
Simplifying to achieve the RHS:	$\begin{aligned} & =\frac{1}{8} \cos 4 x+\frac{1}{2} \cos 2 x+\frac{1}{8}+\frac{1}{4} \\ & =\frac{1}{8} \cos 4 x+\frac{1}{2} \cos 2 x+\frac{3}{8}=\text { RHS } \end{aligned}$

Modelling with trigonometric functions
In the exam you will likely be given problems where trigonometric functions are used to model real-life situations, often
involving the forms Rsin $(x+\alpha)$ and $R \cos (x+\alpha)$. To succeed in these involving the forms $R \sin (x \pm \alpha)$ and $R \cos (x \pm \alpha)$. To succeed in these questions, you must properly understand the
scenario given to you. Read through the text more than once to make sure you understand what is going on. The maths itself is the same as before; you just need to be able to apply it in the context of the question.

Example 9 : A town wishes to build alarge Feris wheel to be used as a tourstatrtraction. The height above the
$H=25+20 \sin \left(\frac{2}{5} t\right)-65 \cos \left(\frac{2}{5} t\right)$,
where H is the height of the passenger a
started. The angles are given in radians.
a) By rewriting H in the form $A+R \cos \left(\frac{2}{5} t\right.$
height of the Ferris wheel above the ground
b) Find the time taken for one complete revolution.
 we need to use the Rcos $\left.\frac{2}{5} t+\alpha\right)$ form, our cosine
coefficient must be positiv. So consider coefficient must be postive. So consider
$65 \cos \left(\tilde{S}_{5}^{2} t\right)-20$ sin $\left(\tilde{5}_{5}^{t} t\right)$ rather than $20 \sin \left({ }_{5}^{2} t\right)-$ $65 \cos \left(\frac{5}{5} t\right)$
By looking at our equation, we can deduce that H is
maximum when cos ${ }^{(2)} t+0$. maximum when $\cos \left(\frac{2}{5} t+0.298\right)$ is minimum. This question is sssentially asking us to calculate the $\therefore H=25-5 \sqrt{185} \cos \left(\frac{2}{5} t+0.298\right)$
perod four tanciont.

To do so, we just need tol ook at our cosine function:
since cos (t) has a period of 2π, we can conclude that
.
Hhas a period of $\frac{2 \pi}{\frac{2}{5}}=5 \pi$.
The reason we can say this is because the cosine

mpared to cos (t), al the t values are multiplied by
$\frac{2}{,}$, so our time period is also multiplied by $\frac{1}{\frac{1}{2}}$ giving us
$\therefore H_{\text {max }}=25+5 \sqrt{185}=$ max height above ground
The time taken for one complete revolution is $\frac{2 \pi}{\frac{2}{5}}=5 \pi$.
5π.

